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E V O L U T I O N  E Q U A T I O N  F O R  W E A K L Y  N O N L I N E A R  WAVES 

I N  A T W O - L A Y E R  F L U I D  W I T H  G E N T L Y  S L O P I N G  B O T T O M  A N D  LID 

G. A. Khabakhpashev and O. Yu. Tsvelodub UDC 532.59 

A second-order differential model for three-dimensional perturbations of the interface of two 
fluids of different density is constructed. An evolution equation for traveling quasistationary 
waves of arbitrary length and small but finite amplitude is obtained. In the case of the horizontal 
bottom and lid, there are perturbations of the Stokes-wave type among steady-state periodic 
solutions. For moderately long perturbations, solutions in the form of solitary waves which are 
in agreement with the available ezperimental and analytical results are found. The problem of 
a smooth transition from the deep-fluid to the shallow-fluid region is studied. 

Borisov and Khabakhpashev  proposed a very simple differential model  capable of describing the 
dynamics of long and short three-dimensional,  weakly nonlinear perturbat ions of the interface of two fluids 
of different density confined by a rigid horizontal bo t tom and lid. However, the derivation of the wave- 
type equation for quasistat ionary disturbances was not quite correct. In addit ion,  formally, even a linearized 
equation can have unstable solutions. The purpose of this work is to obtain a second-order differential model 
and a corresponding evolution equation that  is free from the above-mentioned disadvantages without requiring 
tile layers to be of constant depth .  

1. S e c o n d - O r d e r  D i f f e r e n t i a l  M o d e l .  It is assumed that  the fluids are ideal, incompressible, and 
immiscible, tile stationary components  of the fluid motion equal zero, the occurring oscillating flows are 
potential, and the waves are weakly nonlinear (i.e., rlak/tanh(khm ) ~ e, where r]a is the ampli tude of the 
disturbance at the interface, k is the wave number,  hm is the depth of the smaller layer, and e is a small 
parameter). Third-order infinitesimals are omit ted with capillary effects ignored. 

In [1], the initial sys tem of hydrodynamic equation was reduced to the equations 

077 
0---/+ V .  {(ut)[r /+ (-1)tht]} = 0, (l.1) 

0--T + v  +5-? =0 (1.2) 

by integrating over the vertical coordinate and by using the standard kinematic  and dynamic boundary 
conditions on the lid, the bo t tom,  and the interface. Here t is the time, u is the vector of the horizontal 
component of the fluid velocity, the angular brackets indicate its value averaged over the layer depth,  g is the 
acceleration of gravity, p is the  density, p is the pressure, l = 1 for the upper  fluid, and l = 2 for the lower 
one; the subscript i indicates the  values of the quantities related to the interface and the gradient operator V 
is determined in the horizontal plane. 

Then, in [1], the use of well-known dependences for the vertical profiles ul  (see, for example, [2]) enabled 
one to relate the Fourier components  of the boundary and averaged velocities of the fluids: 

u~i(a;, k) = khl coth(khl)(w(a;, k)}, (1.3) 
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Fig. 1. The dimensionless phase velocity c, as a 
function of the dimensionless wave number k, for 
h2/hl = 3 and p2/pl = 1.25: curves 1 and 2 refer 
to calculation by the approximation (1.5) for a = 0 
and 2/3, respectively, and curve 3 to calculation by 
the exact dispersion relation (1.4). 

where w is the cyclic frequency. If Vh  ,-, ~312, the formulas for waves in a liquid of constant depth are also 
locally true for a weakly inclined bottom and lid. In this connection, we give one more classical formula, 
namely, the dispersion relation for linear monoharmonic vortex-free waves in a two-layer liquid [2]: 

~o2[plcoth(khl) + p2coth(kh2)] = gk(p2 - P])- (1.4) 

We replace approximately the transcendental equation (for the wave number) by the following simplest Padd 
approximation: 

2 =k29 , A~:= 1 +aw,,  

g+ = gP2 - p______.._~l /3 = hlh2 pl + p2 6 = hlh2 p2 - Pl 
Pl + P2 ' X ' X ' 

X = plh2 + p2hl. 

(1.5) 

Here c is the phase velocity (the subscript 0 indicates its value for waves of infinitely small frequency) and 
a is the numerical coefficient. If a = 0, we have the simplest polynomial approximation suggested in [1]. 
In this case, the long-wave (w, 2 << 1) and short-wave (w, 2 >> 1) asymptotic curves coincide with the exact 
dispersion curve. In addition, in the range of intermediate frequencies the approximation error is determined 
by the ratios of the layer depths and the fluid densities. In particular, for h2/hl = 3 and P2/Pl = 1.25 (the 
experiment in [3] was performed for these values), the maximum relative deviation of the exact relation (1.4) 
from the approximate (1.5) with cx = 0 is 8.5%, and it is reached for k. = kH .,~ 4 (H = hi + h2 is the 
distance between the bottom and the lid). If a = 2/3, the approximation error does not exceed 2%, and the 
corresponding maximum is at tained for k. ,~ 6 (Fig. 1). A comparison of relations (1.4) and (1.5) leads to the 
expressions khtcoth (khl) = 1/A,o + w2hdg+ by means of which we write Eqs. (1.3) in the form 

Awuli(w, k) = (1 + Aww2ht/g+)(ut(a:, k)). (1.6) 

Application of the inverse Fourier transform to (1.6) yields the differential relations for the boundary and 
averaged velocities 

Atuli = (ul) - At ht 02(ut) /3 02 
g+ Ot 2 , A t =  l - a g - -  for---- 7. (1.7) 

In contrast to formulas (1.7), relations (1.3) and (1.6) also remain valid in the case of weakly nonlinear 
perturbations. Therefore, we can use the generalization of expressions (1.7) 

Atuu (ul) A t { [ ~ +  ( -1) l  ( 3htO2~7~]O2(ut) ' }  
= - -  _ ~ + - - ~ ] ]  Ot  2 4 U l i  , ( 1 . 8 )  

g+ g+ 
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where u}i are the velocities of translational motion of the fluid particles near the interface of the infinitely 
deep layers in the direction of the wave motion.  These values are the second-order infinitesimals and depend 
neither on the horizontal coordinates nor on time. Thus, in the approximation considered (without including 
the third-order infinitesimals) the terms Ouu/Ot and Vu~, which enter Eqs. (1.2), does not contain u'li. 
However, the presence of u}i in Eqs. (1.8) is necessary for obtaining a solution of the Stokes-wave type for 
two infinitely deep layers (see, e.g., [4, 5]). We note that  relations (1.8) are also in agreement with the results 
available for the long-wave range. 

We now differentiate Eqs. (1.2) twice with respect to time, mult iply all the terms by -c~3/g+, and add 
again to Eqs. (1.2): 

027 pi 
I 1AtVu2i = O. (1.9) t ' - ~ -  VTj + 

The first terms in Eqs. (1.9) are replaced by means of expressions (1.8). Owing to the nonlinearity of the 
last terms of Eqs. (I.9), in the subst i tut ion one can confine oneself to the first order of accuracy and the 
third-order infinitesimals can be ignored, i.e., one can assume that  

u .  = <,,t) - ( h d g +  ) (O2<uz ) /Od) .  

Therefore, the conservation laws for the horizontal components of the momen tum in the layers do not contain 
the values of the fluid velocities at the interface: 

O(uz) t ((ut ) At 02<ut> 2 027Vq. ~ 
g+ at ~- ~ ~ J 

_~{ h, (-l)l(7+3hlO27~]O2<ul>" ~ 
-A, [?T+ _ - JJ j = 0 .  (1.10/ g+ g+ 

rio reduce the system of four differential equations (1.1) and (1.10) to one equation for the perturbation of 
the interface, we apply the operator V to Eqs. (1.10) in a scalar manner  and multiply them by (-1) t+lht :  

O 
( 1 -  h-J-t A,~t2)-~t [(-1)'+lhlV. (u,) ] 

g+ 

--(-1)tAt [ghlV2q + htv2pi + h, tV. p, \NTvT)+_~v2((u,) g+~176 2 )2] (027 h i 

ah,027)02(' ,11  ,,,A  ,031,,,I 

+(-t)lg+hlh2xOt2 gV7+ pt g+- Ot a "(plh2Vhl+p2 7 V h 2 ) = 0 .  (1.l l)  

Tile mass conservation laws (1.1) are more conveniently rewritten in the form 

07 
( -1 ) /+ lh lV  �9 (ul> = ~ -  + 7V" (uz) + (u / ) .  V[7 + (-1)/h/] .  

We substi tute these relations into the first linear terms of Eqs. (1.11): 

_ _  0 0 q  (<u,)'q)] + - -  A, [ ( q +  - ~ ,  ] Or'-' J g+ g+ Ot g+ 

g+ Or. 2 ] + Ot 

~#h~ 0 2 ( Vp~ hl O3(~t)'~ 
+ ( - 1 )  l 9+hlh2)l Ot 2 \9Vq + --Pt 9+- -~5 ]" ( plh2Vhl + P 2h2Vh2) = O. (1.12) 
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In Sec. 4, these equations are used for the solution of the problem of a smooth transition of the linear wave 
from a deep to a shallow fluid. 

2. E v o l u t i o n  E q u a t i o n  for  Q u a s i s t a t i o n a r y  Waves .  In Eqs. (1.12), the averaged velocities of the 
fluids enter only into the second-order infinitesimal terms. To eliminate (ul) from these terms, it is necessary 
to make an additional assumption. We assume that  in the reference system moving together with the wave 
the form of perturbation varies slowly, i.e., r 1 = q(r,  r ) ,  where r = et and r = x - Ut [x = (x, y) and U is the 
characteristic wave velocity]. Then, we have V~ = Vr  and O/Ot = cO~Or - D, where D = U -  V. Hence, with 
accuracy up to the first-order infinitesimal terms from Eqs. (1.1) we have the equalities (ul) = (-1)tUr]/ht 
by means of which we substitute (ut} into Eqs. (1.12): 

U2 V2 2 (D2r/Vq)] D 2 q -  h' ADD4q ( -1 ) 'D2r l2 - ( -1 ) 'AD[  g h ' V 2 q + ~ v 2 p i  +-~ l  r l + h t V .  
g+ hz pt 

+ _ AD -- -- -- 
g+ g+ 

-Jr g+hlh2x~ [(-1) ' (ghlVq + ~ T V p i ) -  J (plh2Vhl+ p2h2XYh2) 

_ 

7 ,  + g+ g+ / J 

Here AD = 1 - - a ~ D 2 / g + ,  and the third-order infinitesimal terms are omitted as in the previous 
transformations. 

We obtained a system of two equations for two desired q and Pi. To reduce them to one equation, we 
multiply Eq. (2.1) by h2/p2 for 1 = 1 and hi~p1 for l = 2 and add them. As a result, we obtain the evolution 
equation 

U 2 O2rl-~D2r]2- AD[g~72TI-Ov 4ADD4rl-+-~T~72r]2 oveS~.(O2rl~lrl)] 
g+ 

5 (6D2 + U2V2)(D2r/)2 } 2 g +  - (D 2 - U2V2)( D%)I 2(g;)2 

- L ~  g+x 2 

_ / 32  
= 2~[i 2~D2 + a - - ( , V 2  + 3 D q l D 0 "  (',.2) 

g7 g+ g+ ]J Or 

for perturbations of the interface of a two-layer fluid. In Eq. (2.2), all the coefficients are determined only by 
the physical (pl, p2, and g) and geometrical (hi and h2) parameters of the system: 

p2h 2 - -  plh 2 p2hl - -  plh2 
C -  , ~=  hlh2x hlh2(pl + P2)" 

The expressions for the quantities/3, 5, X, and g+ are given after formula (1.5). 
We shall consider the most interesting partial cases. The laver depths are assumed to be constant 

and the plane wave is assumed to travel in the direction of increase of the x-coordinate. Then, Eq. (2.2) is 
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Fig. 2. Coefficient #, = # H  as a function of the 
wavenumber k, for h2/h~ = 3 and P2/p] = 1.25: curves 
1 and 2 refer to calculation by the approximation (2.6) 
for a = 0 and 2/3, respectively. 

noticeably simplified: 

[1 28U2 02 
2e [ g+ 0~ 2 

1 A '~ 02q2 ( ~ ~ U 2 
\1 +  )-07 

a/32 02 (1 3U4 002 - -  H- - _ Jr - ) ]  02r/ ~* "02r/ ~  04r/ 

U 4 047] 2 (~ U2A 02 [(0/]'~ 2 7U 4 (02T]'/2 ] 

U 2 02 
A r  --_ g+ 0~ 2" 

Here ~ = x - Ut. We emphasize that, for linear perturbations, this evolution equation gives only neutral-stable 
solutions. Equation (2.3) can be integrated over the variable ~. In this case, the integration constant should be 
set equal to zero to eliminate nonphysical solutions. If a progressive stable wave occurs, we have Oq/Or = O. 
i.e., the left side of Eq. (2.3) is equal to zero. As a result, we obtain the standard differential equation 

dr/ U 4  d3---~ (1 1 ~A~) @2@ (U 2 - g6A~) -~  - j3--~+ A~ d(3 - ( U  2 + 

U 4 d3r/2 6 ~ d dr/ 2 7U 4 (,d2q,~2] 
- - 0  

One of the partial solutions of Eq. (2.4) is a solution of the Stokes-wave type, which can be written in the 
following form: 

q --- acos (k~) -4- #a 2 cos (2k(). (2.5) 

Substituting this relation into Eq. (2.4) and grouping the terms to the first power of a, we find that U = c = 
~:/k. The tcrms that  are quadratic in a lead to a more cumbersome Pad6 approximation of the coefficient #: 

2 2 3( + w,2(87 - 5/fl2) + w4,65/Z2 + aw,214( + 327w,2 + 3w, (9w, - 1/c2,)5/fl 2] (2.6) 

# = 12w,2[1 + a(5~,  2 - 1/c2,)1 

In the case where the fluids are very deep or the waves are moderately long (for a = 2/3 and hi = h2), this 
formula yields the results given in [4] (see also [5]). 

The behavior of the coefficient # in the range of medium and short waves is shown in Fig. 2. Three 
periods of wave profiles are shown in Fig. 3: in the case where the wavelength and the layer depths are of the 
same order of magnitude (Fig. 3a) and in the case where the wavelength is one order of magnitude lower than 
the layer depths (Fig. 3b). One can see that. the hollows are steeper for negative values of the coefficient it. 
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Fig. 3. Dimensionless profiles of the periodic waves (q* = q/H), which are calculated by 
formulas (2.5) and (2.6) for h2/hl = 3, p2/pl = 1.25, a = 0.3, and k, = 3 (a) or 33 (b): 
curves 1 and 2 refer to calculation by the approximat ion (2.6) for a = 0 and 2/3, respectively. 

and the peaks are sharper for positive values of #. 
3. S o l i t a r y  S o l u t i o n s  of t h e  M o d e l  E q u a t i o n .  We return back to Eq. (2.4) and integrate it 

once more over the variable ~. (To satisfy the  zeroth boundary  conditions at infinities, we assume that  the 
integration constant  is zero.) Thus, we are led to the second-order nonlinear differential equation 

U4 d2q (1 1A~ q2 (U~--gSA~)q-fl-~+ A~-~ -(U2 + 2 ) 

U 4 d2q 2 ~U2Ar 2 7U4 ~d2q"~ 2] 
+~,fl~--~Ar d~ 2 L\O-~] + (g+)2\d~2.] j = 0 .  (3.1) 

We consider the case of sufficiently long per turbat ions  (khm < r Then, we can consider that  A~ = [ in 
the second and third terms of Eq. (3.1) and omit  the last two terms. Here, all the corrections that  are ignored 
are not smaller than the third-order infinitesimals. If a = 2/3, we finally obtain a very simple equation that 
takes into account the weak nonlinearity and long-wave dispersion of the perturbations: 

2 5"~ d2q 
- 0 

g+ 

The solutions of this equation'can be expressed in terms of the Jacobi elliptic functions, i.e., they are cnoidal 
waves. In particular,  for solitary per turbat ions  we seek the solution in the form 

q = qa/cosh2~s, ~s = ~/L. (3.3) 

Here L is the characteristic longitudinal dimension of the wave. Then the second derivative d2q/d~ 2 is expressed 
through the square of the hyperbolic tangent :  

d2q _ 27/ (3tanh2~ s _ 1). (3.4) d~2 L 2 
We rewrite Eq. (3.2) with the use of the subst i tut ions (3.3) and (3.4) in the form 

3~U 2 2~__ US( ) 
U 2=gS+2cosh2~sq+ _ ' ~ -  U 2 _ 2  g+ 5 g5 (3tanh2~., - 1). (3.5) 

From this formula, for ~ = 0 (tanh~s = 0 and cosh~s = 1) we find the equality 

3U 2 2/3U 2 U 2 
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Fig. 4. Profile of the solitary wave (~, = ~ / ,V )  for 
h2/hl = 3 and p2/pl = 1.25: curve 1 refers to calculat ion 
by formulas (3.3) and (3.11) and curve 2 refers to 
calculation by formulas (3.3), (3.8), and (3.9); vertical 
sections refer to the experimental data [3] with account 
of the measurement error. 

Similarly, for ( -~ ec (tanh (s ~ 1 and cosh ~s --* oe) relation (3.5) yields 

43U ~ U 2 

Adding (3.6) to (3.7) multiplied by 2, we obtain 

u = c 0 / ~ / 1  - ~:, 

Substituting (3.8) into (3.7), we find 

L = 2hlh2(pl + p~) 
X 

(3.7) 

,,* = C,~. (3.8) 

~3  1 + 22:, (3.9) 

The dependencies (3.8) and (3.9) are close to the respective equalities for the solitary solutions of the 
Korteweg-de Vries equation [6] 

Ua = c0(1 +-~2~ ) = U[1 + O(c2)], Ll=21hlh2(plhl+p2h2)3Xq* (3.10) 

Note also that formulas (3.8) and (3.9) are in agreement with the characteristics of the solitary perturbations 
of the Boussinesq equation [7] 

U2=co~/l +rF=U[l +O(c2)], L2= LI~/I +r]:. (3.11) 

Thus, the soliton velocities in the Korteweg-de Vries and Boussinesq equations nearly coincide with 
the value for the wave found (for the same amplitudes), and some discrepancies between their lengths are due 
to the values of the ratios between the densities and depths of the layers. The previous studies of stationary 
waves have also shown that the solitary perturbation is determined by velocity U and length L1 [8] or by Eqs. 
(3.11) [9]. 

The experimental form of the solitary perturbation [3] is compared with the analytical dependences in 
Fig. 4. One can see that all the results are in good agreement. 

In the phase space of the solutions of Eq. (3.1), there are two equilibrium positions which correspond 
to the solutions r/ =const:  r/0 = 0 and r h = 2(1 - g6/U2)/(3{). We shall study the types of these singular 
points. Let 7/= r/j + r/, where j = 0 or j = 1, and 7/' be the infinitesimal. Then the linearized equation (3.1) 
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can be rewritten in the form 

"~ d2r/ d4r/" 
1 3 (7 j )7 '  = U ~ ( 1 - 2 7 7 j ) ~ -  aU} [(~-7~ + (r/j) d--~- + U ~ ( 1 -  277,) d-~- ] �9 

Here U~ = U2/(gh) and U~ = UZt3/g+. For the simplest model (a = 0), the point 7 = 71 is the saddle for 
U~ < 1 and the center for 1 < U~ < 47/(47 - 3~); in contrast, the zeroth state of rest is the center for U~ < 1 
and the saddle for U~ > 1. The t e r m  d4r//d~ 4 can be ignored in the case of quite long perturbations. If 
a = 2/3 (second-order model), the zeroth equilibrium position is the center for 2/3 < u~ < 1 and the saddle 
for U~ > i, and the point 7 = 71 is the saddle for U 2 < 1 and the center for 1 < U~ < (127 - 2ff)/(127 - 5(). 
The upper boundary of the solitary-wave amplitude can also be found with the use of the latter inequality: 
7~ < 1 / ( 6 ~  - 0- 

4. P e r t u r b a t i o n  T r a n s i t i o n  f rom a D e e p  to  a Shal low F lu id .  We consider the propagation 
of a plane linear monochromatic wave with frequency w in the direction of increase of the x coordinate: 
r /=  a(x) exp [i(0(x) - cot)]. This is possible only if the layer depths (they vary smoothly) also depend only on 
the x coordinate. Consequently, Eqs. (1.12) become noticeably simpler: 

c dht ht (1 + hZ_A~co2]w27? + iwrl + (-1)tA,~(ght 027--~z2 + --  02pi) 
g+ ,, g 7 2  pt Ox 2 ; 

c~ht w2 l 071 10pi'~ _ _c_icoa7 ] / 2dh, 2dh2"~ 
g+ J 

The expression (-1)z(ut) = c71ht is used to derive Eqs. (4.1). These equations are reduced to one equation 
for 7, as in Sec. 2: 

027 
(1 + co2,A.,)coh7 + g~A~o~ 2 

c _ _  ( + [ - - i w 7  + c~13(pl + p2)co2 g+ 0" - icoa7 Iplh]--~-x + p2hl---~x j = O. (4.2) 
[hlh2~ g~,X 2 Ox g+ 

Owing to the assumption, we have &l/Ox = (7/a) da/dx + iq dO/dz and 

027 7 d2a 7(dO'~ 2 ( 7 da dO d2O'~ 
Ox ~ -- a dx 2 \-~x ] + i_2  a dx dx + 7 dx 2 j .  

(4.3) 

Let the modulus of the derivative of function O(x) be much larger than that of the derivative of the function 
a(x). Then the first term in the right side of formula (4.3) can be omitted. These expressions for the derivatives 
enable us to rewrite Eq. (4.2) in the form of a system of equations (by dividing the equation into real and 
imaginary parts) for the functions a(x) and O(x) which determine the perturbation: 

" 2 fdO\2a( x c~/3(pl -t- P2) 2 da f h2dhl dh2); (4.4) 
(l+co.A~)coa(x)=gSA,o~-~---xx) )+ X2 w -~z~pl 2--~-x +P2h ~ dx]  

d 2 0 2 da dO 
g a a ~ ( ~ a ( ~ )  + ~ /  

+ hl_.~X ( 1 _ c~w4)a(x) + ~(fllx 2+ P2)co2a(x)_~x]dO~ / ,~dhl dh2~ (P'h~-g-~ + P~'~'~-aT: = 0 (4~) 

In the approximation under study, the second term on the right side of formula (4.4) can be ignored; then, 
dO/dx corresponds to the wavenumber k. If pl = 0 and hi =,  from the dispersion relation we have the relation 

dk cw(1 + 23w2,) dhz 
dx 29t,~(1 + ~co~,)~ dx 

By substituting this expression and dO/dx = k into Eq. (4.5), we obtain the following differential equation 
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Fig. 5. Variation of the dimensionless wave amplitude 
during its smooth transition from deep to shallow layers: 
curves 1 and 2 refer to calculation by formula (4.8) for 
a = 0 and 2/3,  respectively. 

with the separated variables a and h: 

da, dh2,(1 + 2ah2,) 
a, = - 4 h 2 , ( 1  + ah2,)[1 + h2,(1 + ah2,)]" (4.6) 

Here a, = a(x)/aoo and h2, = h2kc~ --" hecz2/g, where aoo is the wave amplitude for an infinite depth of the 
lower fluid (the initial amplitude). The solution of Eq. (4.6) is a simple power-fractional relation 

[ 1 ] ' "  
a ,  = 1 + h2, (1 + ah2,) (4.7) 

Formula (4.7) with a = 0 was obtained in [10] for waves at the free surface of a homogeneous fluid. 
The solutions of the second-order model can also be found as was done in [10]. We assume that 

hj = h2 = h and the system of linearized equations (1.I) and (1.10) is reduced to one equation for the liquid 
flow rate in the layer q = (ul)hl: 

02q g+hAt 02q h At 04q 
Ot 2 Oz 2 g+ ~ = O. 

If q = Q(x) exp (i[O(x) - wt]), the real part  of this equation is again in agreement with the dispersion relation 
and its imaginary part gives the conservation law k(z)Q2(x) = const. Using any equation in (1.1), one can 
rewrite the latter in the form: a2(x)/k(z) = const. Using the Pad~ approximation of the dispersion relation 
([.5), we obtain the same power-fractional relation 

a,  = 1 § h,(1 § ah,) ' (4.8) 

where h, = hk~ = hw2/g+. The curves for various values of c~ are compared in Fig. 5. 
Conc lus ions .  The main results of the s tudy are as follows: 
1. A second-order model for two-dimensional weakly nonlinear waves of arbitrary length in a two-layer 

fluid with a gently sloping bottom and lid has been proposed. The approximation error for the phase velocity 
does not exceed 2%. 

2. An evolution equation for progressive qua.sistationary perturbations which, among others, has stable 
solutions of the Stokes-wave type has been derived. In the limiting cases, the resulting dependence of the wave 
form on the frequency and the parameters of the system with horizontal boundaries gives known results 

3. Sufficiently long perturbations can also be cnoidal waves. In particular, the velocity and profile of 
solitary perturbations were found to be in good agreement with the characteristics of not only the solitons of 
the Korteweg-de Vries and Boussinesq equations but also with the experimental data. 
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4. The problem of a smooth transition of a linear monoharmonic wave from deep to shallow layers has 
been studied. A comparison with the results obtained for perturbations of the free surface of a homogeneous 
fluid has been made. 

This work was supported by the Russian Foundation for Fundamental Research (Grant No. 96-01- 
01766), the Russian Council of State Support for Leading Scientific Schools (Grant No. 96-15-96314), and the 
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